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Microbial ecosystems are composed of multiple species
in constant metabolic exchange. A pervasive interaction in
microbial communities is metabolic cross-feeding and occurs
when the metabolic burden of producing costly metabolites is
distributed between community members, in some cases for the
benefit of all interacting partners. In particular, amino acid
auxotrophies generate obligate metabolic inter-dependencies in
mixed populations and have been shown to produce a dynamic
profile of interaction that depends upon nutrient availability.
However, identifying the key components that determine the
pair-wise interaction profile remains a challenging problem,
partly because metabolic exchange has consequences on
multiple levels, from allocating proteomic resources at a cellular
level to modulating the structure, function and stability of
microbial communities. To evaluate how ppGpp-mediated
resource allocation drives the population-level profile of
interaction, here we postulate a multi-scale mathematical model
that incorporates dynamics of proteome partition into a
population dynamics model. We compare our computational
results with experimental data obtained from co-cultures of
auxotrophic Escherichia coli K12 strains under a range of amino
acid concentrations and population structures. We conclude by
arguing that the stringent response promotes cooperation
by inhibiting the growth of fast-growing strains and promoting
the synthesis of metabolites essential for other community
members.
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1. Introduction
Bacterial cells rarely live in isolation, but coexist in communities composed of a genetically diverse
assembly of different individuals, with interactions mediated by the exchange of small molecules.
Genetically diverse populations tend to exhibit increased resilience to invasion [1] and to
environmental perturbations [2–4], as well as to enable the implementation of division of labour
strategies [5–8]. In particular, cross-feeding interactions can increase the diversity of the community
and lead to metabolic cooperation [9,10] by changing the population’s dynamics and composition
[1,11]. If the consumption of a metabolite benefits one of the interacting partners and is detrimental
for the other, it is referred to as parasitism [12], while if it also benefits the metabolite-producing
population, then the community is said to be mutualistic [13,14].

Crucially, metabolic exchange mediated by the environment is not always associated with a benefit
for the community [15,16]. Moreover, metabolic interactions are not static but condition specific [17–
20], resulting from metabolic shifts [21] and trade-offs between different microbial growth traits [22].
Previous studies have shown that in high-nutrient environments, diversity is reduced and interactions
tend to be antagonistic [2,16,23], thus increasing susceptibility to invasion by defectors [24,25]. By
contrast, nutrient obligate cross-feeding interactions have been shown to become more cooperative in
low-nutrient environments, both in natural communities [26] and in synthetic systems [2,18,27–29].

But a key cellular process occurs under amino acid starvation. In environments where nutrients are
scarce, cells regulate their global metabolism to shut down growth and increase the synthesis of limiting
metabolites [30,31]. This dynamic partition of the proteome is mediated by two small nucleotides
collectively referred to as ppGpp. This alarmone is known to modify the expression of hundreds of
genes [32,33], including those responsible for the synthesis of the translation machinery [34]. Indeed,
altering the normal levels of ppGpp was shown to produce several growth impairments and lethal
phenotypes [35]. On the other hand, ppGpp regulation enables a dynamic proteome allocation that
can be used to tune the concentration of ribosomes to maximize growth [36] and increase adaptation
to fluctuating environments [37]. Furthermore, the stringent response is also known to increase
survival to nutrient starvation [38,39], by allocating a large fraction of the proteome towards
metabolite production at the expense of ribosomal synthesis [38,40–42].

The objective of this paper is to evaluate howdynamic proteome allocation in response to nutrient limitation
impacts the population dynamics of a syntropic community. The paper is structured as follows. First, we will
postulate a dynamic proteome partition model that provides estimates on growth and amino acid production
rates, which are then used by a population dynamics model to evaluate how different environmental
conditions result in different interaction profiles at a population level. We validate our theoretical predictions
with an experimental model system consisting of different mutants of Escherichia coli K12 growing under a
range of amino acid concentrations. This library of strains contains deletions in genes encoding for the
production of essential amino acids, thus producing a syntropic interaction when grown in co-culture. Finally,
we use the multi-scale model to evaluate computationally how ppGpp produces a dynamic proteome
allocation that can drive the diversity and productivity of a syntropic community.
2. Modelling bacterial growth under resource limitation
The development of genomic and bioinformatic tools has enabled researchers to comprehensively
quantify the interaction between genes, proteins, reactions and metabolites, thus providing
information that can be used to postulate and analyse genome-scale models [43]. These models aim to
predict bacterial phenotypes by assuming an internal quasi-steady-state equilibrium and optimizing
fluxes from the stoichiometry of every known metabolic reaction occurring within the cell. Multiple
extensions have been proposed to evaluate how fluxes are exchanged between individuals, and from
an individual to multiple interacting species [21,44–49]. By incorporating diffusion of cells and
molecules in space and time, computational models based on dynamic flux balance analysis can be
extended to include multiple bacterial types interacting through the environment [46,50].

The aim of the mathematical model postulated in this paper is to predict the population dynamics
that emerge from the metabolic exchange between individuals in the community. This problem spans
multiple levels of complexity: from metabolic regulation occurring at a cellular level in response to
environmental perturbations (e.g. changes in biotic and abiotic conditions) to ecological constraints
resulting from the interaction between cells and their local environment (e.g. uptake or secretion of
nutrients). A wide range of mathematical modelling approaches have been used to study metabolic
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Figure 1. Proteome dynamics model. (a) The overall proteome comprises three main sectors: housekeeping proteins denoted as Z,
ribosomal proteins as R and metabolism and nutrient uptake as E. The latter sector is further divided into E and y to consider the
production of amino acid Y at a rate β. (b) Dynamics of proteome sectors are driven by the availability of glucose (S) and an
essential amino acid (X). Growth rate is proportional to sector R, which in turn activates ppGpp during the stringent response,
thus inhibiting transcription ribosomal mRNAs and promoting synthesis of metabolites from sector E. (c) Bacterial growth rate
(λ) obtained numerically for a range of amino acid and glucose concentrations. (d ) mRNA concentrations in time of different
proteome sectors ( purple for mE and blue for mR) under different nutrient conditions: low-resource (S = 0.5, dotted lines) and
rich substrate (S = 10, solid lines). (e) Protein concentrations for each sector (E in purple, y in dark red and R in blue). In
environments with low concentrations of amino acids (indicated as poor, dotted lines), ppGpp (G, in pink) inhibits the
production of ribosomal proteins and promotes the synthesis of metabolites. ( f ) Fraction of proteome occupied for different
sectors (E in purple and R in blue). In high-nutrient environments (solid lines), a large proteome fraction is allocated for sector
R, while in environments with low concentrations of amino acids (indicated as poor, dotted lines) the fraction allocated for
sector E increases, thus inhibiting growth and promoting the production of the exchanged metabolite.
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interactions in complex microbial communities, for instance by postulating mechanistic population
dynamic models that can be used to evaluate the eco-evolutionary dynamics, although they are often
limited by modelling and parametric uncertainties [51]. Other studies have posed coarse-grained
models that associate growth rate with how bacterial cells allocate resources towards protein synthesis
and metabolic functions [41,52–55].

A common assumption of constraint-based models is that the proteome can be divided into three
different functional sectors [40]: the ribosomal sector (hereafter denoted with R), which includes not
only ribosomes, but also other associated molecules (initiation factors, elongation factors, tRNA
synthases); the metabolic sector (represented with E), which encloses catabolic and anabolic proteins,
constitutively expressed proteins, and particularly, the necessary enzymes to grow in specific media.
As illustrated in figure 1a, we further divide sector E into two sub-sectors: y for the energetic cost of
amino acid production, and E for the remaining catabolic and anabolic reactions occurring inside the
cell. A third sector (denoted Z) encompasses all the genes not associated with growth rate, including
housekeeping genes. Therefore, we consider that Zþ ðE þ yÞ þ R ¼ 1.

A recent study incorporated dynamic metabolic adaptation into a consumer-resource framework [56]
to show that the structure and composition of competitive communities are highly influenced by the
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metabolism of member species [21,42]. Here, we use a similar approach to evaluate the role of dynamic
proteome allocation in the resulting interaction profile exhibited by a co-culture of auxotrophic strains.
First, as other studies [21,40,41], we assume that sector Z remains constant through time and we focus
on evaluating the role of nutrient availability in the temporal dynamics of sectors E and R. Figure 1b
shows a schematic diagram of our proteome partition model, illustrating that the size of each sector is
regulated by the input of substrate (e.g. glucose, denoted by S) and an essential metabolite (e.g. an
amino acid, with concentration denoted by X). We model the input of glucose and amino acid into
the cell as a saturating function, which depends on both the concentration of S and X, which, for
simplicity, we assume are consumed at the same rate:

uðS, XÞ ¼ mðS � XÞ
k þ ðS � XÞ ,

where μ and k areparameters denoting themaximumuptake rates andhalf-saturation constants, respectively.
To overcome the negative effects associatedwith carbon and amino acid starvation, bacterial cells encode

awell-conserved stress signalling pathway known as the stringent response [32,57]. The main effector of this
response is the alarmone ppGpp, with a time-dependent concentration we denote by GðtÞ. Crucially,
synthesis and degradation of ppGpp depend on nutrient availability; if too many resources are being
used to produce proteins for growth, RelA detects empty tRNAs and enhances the production of ppGpp,
which in turn reshapes the proteome by enhancing the synthesis of metabolites from the E sector [57].

In our proteome partition model, we consider that ppGpp is produced at a rate θ = θb + F(θi, R), where
θb represents the basal transcription rate, and F(θi; R) an inducible rate that increases monotonically with
respect to R. So, if dG denotes a constant degradation rate of the alarmone, then the dynamics of ppGpp
regulation can be modelled as

dG
dt

¼ ub þ ui R
1þ R

� dGG: ð2:1Þ

To model the effect of ppGpp in the size of each proteome sector, we consider that G induces the
transcription of genes of the E sector when too many resources are used by the R sector. In consequence,
transcription of the ribosomal sector is suppressed under amino acid limitation [31,57]. In our model, we
denote with ηE and ηR the mRNA degradation rates of the E sector and R sector. Basal transcription of
genes encoding for proteins belonging to sectors E and R occurs at a maximum rate ûE and ûR, while
ppGpp-inducible transcription of sectors E and R is represented by θE and θR, respectively. So, if ω and n
represent Hill parameters describing the interaction between ppGpp and each sector of the proteome,
then the temporal dynamics of mRNAs belonging to sectors E and R can be written as

dmE

dt
¼ uE

Gn

Gn þ vn

� �
þ ûE uðS, XÞ � hEmE ð2:2Þ

and

dmR

dt
¼ uR

vn

Gn þ vn

� �
þ ûR uðS, XÞ � hRmR: ð2:3Þ

Now, let us assume that the synthesis of each metabolite is associated with a cost in terms of energy
consumption [41,42]. In particular, we model biosynthesis of the focal amino acid by dividing the E sector
into two sub-sectors: E and y. Sub-sector E encompasses the majority of catabolic reactions in the cell, and
the y sub-sector describes the energetic cost of producing amino acid Y and releasing it into the
environment (figure 1a). Therefore, the translation rate of each mRNA, κE and κR, depends on JE and
JR, which indicate the proportion of ribosomes that are actively translating the mRNAs of each sector.
Finally, if w denotes the fraction of sector E that is used for the synthesis of metabolites in sub-sector
y, and δE and δR denote degradation rates of proteins from each sector, we can describe the dynamics
of different proteome sectors using the following equations:

dE
dt

¼ ð1� wÞðkE �mEÞ 1� E
R � JE

� �
� dEE, ð2:4Þ

dy
dt

¼ wðkE �mEÞ 1� y
R � JE

� �
� dEy ð2:5Þ

and
dR
dt

¼ kR �mR
1� R
R � JR

� �
� dRR: ð2:6Þ



Table 1. Parameters used in the numerical experiments of the multi-scale model for bacterial strains Bx and By, which are
auxotrophic to amino acids X and Y, respectively.

parameter value (Bx) value (By) description

proteome partition model

μ 1 × 103 1 × 103 maximum uptake rate

k 50.0 50.0 half-saturation constant

ûE 0.020 0.020 basal maximum transcription rate for the genes on E

ûR 0.08 0.08 basal maximum transcription rate for the genes on R

θE 20 20 ppGpp inducible transcription rate for the genes on E

θR 20 20 ppGpp inducible transcription rate for the genes on R

n 2.0 2.0 Hill coefficient

ω 5.1 5.1 activity threshold for ppGpp in sectors E and R

κE 60.0 60.0 maximum translation rate for the mRNAs in sector E

κR 60.0 60.0 maximum translation rate for the mRNAs in sector R

ηE 2.4 2.4 degradation rate of the transcripts on E

ηR 2.4 2.4 degradation rate of the transcripts on R

δE 1.7 1.7 degradation rate of molecules from E

δR 1.7 1.7 degradation rate of transcripts from R

dG 0.8 0.8 degradation rate of ppGpp

JE 0.5 0.5 fraction of ribosomes translating proteins from E

JR 0.5 0.5 fraction of ribosomes translating proteins from R

θb 0.05 0.05 basal ppGpp synthesis rate

θi 15.2 15.2 induced ppGpp synthesis rate

w 0.01 0.01 fraction of sector E used for synthesis of amino acid

population dynamics model

c 13.95 × 109 13.95 × 109 cell efficiency

k1 1 × 10−11 1 × 10−11 growth conversion coefficient

k2 0.5 × 10−9 1 × 10−9 amino acid conversion coefficient
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By numerically solving equations (2.1)–(2.6), we obtain the temporal dynamics of mRNA and protein
concentrations under different environmental conditions. In particular, figure 1d,e shows a comparison
of dynamics exhibited under high- and low-resource conditions (with parameter values described in
table 1). Note how, in nutrient-rich conditions, overall production of proteins and mRNAs is
promoted, while under resource limitation metabolic activity is reduced and, crucially, ppGpp
allocates a larger fraction of the proteome to the E sector. Therefore, under amino acid starvation,
growth rate is reduced and synthesis of essential metabolites is enhanced, as illustrated in figure 1e.
3. Modelling population dynamics of an auxotrophic consortium
In this section, we will postulate a simple population dynamics model that will allow us to evaluate
temporal changes in the abundance of different strains growing in co-culture. First, let us represent
with Bx(t) the density of a bacterial population auxotrophic to amino acid X at time t∈ [0, T ], and
with By(t) the density of a strain auxotrophic to amino acid Y.

Our model considers that growth rate of strain Bx is a Monod function, UxðS, XÞ ¼ l̂ � S=ðK þ SÞ, with
growth rate l̂ and a half-saturation constant represented with K. Previous studies have shown that the
concentration of ribosomal proteins is proportional to the cell’s growth rate [38,58], so we use the
proteome partition model to obtain l̂ ¼ k1 � l, where k1 is a proportionality constant and λ is
computed by interpolating the surface shown in figure 1c with the current environmental
concentration of glucose (with a concentration denoted with S) and amino acid X (for which strain Bx
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Figure 2. Numerical simulations of population dynamics model. (a) Schematic of the population dynamics model for auxotrophic
strains (Bx and By), competing for glucose (S, in green) and exchanging essential metabolites (X and Y, in blue and orange,
respectively). Growth rate of each sub-population depends on the availability of resources and can be estimated from the
proteome allocation model. (b) (i) Numerical results showing the concentration of resources in time: X is produced by By and
consumed by Bx, while Y is generated by Bx and used as a nutrient by By. (ii) Bacterial density of each sub-population in an
experiment of duration T = 180 units of time. (iii) Maximum growth rate (λ) obtained from the proteome partition model
from the environmental concentrations of resources. (iv) Production and export of amino acids for each strain. (c) Growth curves
obtained by simulating the model in co-culture (iii), and for each strain grown in isolation ((i) Bx in blue and (ii) By in
orange). (d ) To quantify the pair-wise interaction profile, we consider a range of initial population fractions and numerically
evaluate the productivity of the co-culture and compare it with respect to that expected in the absence of interaction. Positive
interactions are characterized by a concave Δ density curve, indicating that productivity is maximized when both strains are present.
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is auxotrophic). Then growth rate of strain Bx can be modelled with a growth function Gx(S, X ) = c Ux(S,
X ), where c denotes a resource conversion parameter into biomass. Similarly, growth rate of strain By can
be written as Gy(S, Y ) = c Uy(S, Y ).

We also consider that amino acid X is produced by strain By in surplus and exported into the
environment at a rate βy. Similarly, Bx exports into the environment amino acid Y at a rate βx. Note
that this rate includes both production and export of amino acid into the environment, which we
consider to be proportional to the size of sub-sector y of E. Therefore, we consider that production of
amino acid Y by strain Bx occurs at a rate b̂y ¼ k2 � by, where βy is obtained from the proteome
partition model and k2 is a parameter denoting the conversion of ATP into Y molecules (analogous for
the production rate of X).

In summary, the population dynamics of the cross-feeding interaction illustrated in figure 2a can be
described with the following differential equations:

dS
dt

¼ �ðUxðS, XÞ � Bx þUyðS, YÞ � ByÞS, ð3:1Þ
dX
dt

¼ b̂x � GyðS, YÞ � By �UxðS, XÞ � Bx, ð3:2Þ
dY
dt

¼ b̂y � GxðS, XÞ � Bx �UyðS, YÞ � By, ð3:3Þ
dBx

dt
¼ GxðS, XÞ � Bx ð3:4Þ

and
dBy

dt
¼ GyðS, YÞ � By, ð3:5Þ

with initial conditions ðS0, X0, Y0, B0
x, B

0
yÞ.
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We use a sequential multi-scale modelling approach to integrate both models. First, we compute λ
and β using the proteome partition model for a range of glucose and amino acid concentrations. Then
we discretize the interval [0, T ] in regular sub-intervals [ti, ti + Δt) and, for each time step, we
numerically solve equations (3.1)–(3.5) assuming that growth and production rates are constant during
this time interval. From the concentration of each nutrient in the environment at time ti + Δt, we
interpolate the surface shown in figure 1c and obtain λi+1 and βi+1, which are then used to solve the
population dynamics model in the next sub-interval. This iterative process allows us to model the
dynamics of each sub-population based on instantaneous growth and production rates.

Figure 2b shows a numerical realization of the multi-scale model in a low-resource environment (S0 =
1, X0 = 0.2, Y0 = 0.5). As the concentration of amino acids is initially very low, then growth of both
populations is limited. However, as the population increases in density, the concentration of X and Y
increases, thus promoting growth of both coexisting sub-populations until S is depleted and the
population reaches stationary phase. Note how this feedback between the ecological and proteomic
models results in values for λ and β that change in time, as the concentration of resource changes due
to consumption and production.

To compare growth in the mixed culture with respect to that observed when each strain is grown in
isolation, we consider that the initial population is composed of equal densities of both strains and solve
the system forward for T units of time. We then compare the final density with that observed in a similar
numerical experiment that considers that each strain is growing in isolation. As expected, figure 2c shows
that mono-cultures present impaired growth while, under the same environmental conditions but with
both strains present, the model shows an exponentially growing population that is glucose-limited,
instead of limited by amino acids.

We repeated this numerical experiment for a range of initial fractions of both strains and quantified
the profile of interaction from the bacterial density observed at the end of the experiment. This allowed us
to determine the relative density of the co-culture compared to that expected if there was no metabolic
interaction between members of the community. Figure 2d shows that the resulting interaction profile
is concave, indicating a positive interaction between both strains. In the following section, we will
estimate experimentally the profile of interaction for a collection of auxotrophic strains.
4. Positive interactions are common in an experimental auxotrophic
system

In the past decade, a series of studies have used synthetic communities to study the rules of community
assembly under controlled laboratory conditions (see [59–61] for comprehensive reviews on the topic).
For instance, a previous study assembled synthetic communities of E. coli to understand how
communities with different levels of complexity can establish metabolic cross-feeding interactions
based on the syntropic exchange of amino acids [29].

Here, we use a similar experimental approach, and use strains of Escherichia coli K-12 obtained from
the Keio collection [62], with different amino acid auxotrophies conferred by the deletion of the following
genes: glyA, hisB, ilvA, leuB, metA, pheA, thrC, trpC and tyrA. Moreover, we use fluorescent markers to
measure species abundances at the end of the experiment, thus enabling us to differentiate between
mutualism and parasitism in mixed cultures. We validated that each strain exhibits impaired growth
unless the amino acid auxotrophy is complemented, either by externally supplementing the amino
acid or when paired with a different mutant.

In general, we consider that positive interactions arise when one species promotes the growth of
another one (e.g. niche expansion [63,64] or enhancing nutrient availability [15,65]), or negative when
an individual in the community inhibits another member’s growth rate (e.g. nutrient sequestration
[66,67] or toxin production [68]). Similar to the computational experiments, we characterized the pair-
wise interaction profile between strains by measuring the optical density (OD630) exhibited by a 50–50
co-culture. By subtracting the mean density of both strains grown in isolation, we obtain the relative
optical density (ΔOD630). Table 2 summarizes the relative optical density obtained for all pair-wise
interactions. Note that, although most of them are positive (e.g. ΔglyA–ΔtyrA, ΔmetA–ΔtyrA and
ΔpheA–ΔhisB have the highest positive relative density), only a few co-cultures exhibit a negative
relative density (ΔpheA–ΔthrC and ΔglyA–ΔhisB).

Figure 3a shows the optical density of all 36 co-cultures with 11 different initial abundances of each
strain, from 100% of one strain, to 100% of its partner (see Methods). Although some interactions are
positive (e.g. ΔpheA–ΔhisB, ΔglyA–ΔtyrA, ΔleuB–ΔtyrA, ΔmetA–ΔtyrA), not all interaction profiles are
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Figure 3. Interaction profiles of E. coli strains with different amino acid auxotrophies. Each strain contains a deletion in genes
encoding essential metabolites: ΔglyA, ΔhisB, ΔilvA, ΔleuB, ΔmetA, ΔpheA, ΔthrC, ΔtrpC and ΔtyrA. (a) Each box illustrates
growth (measured as OD630 after 48 h) in terms of the initial fraction of each strain in the co-culture. Solid line illustrates a
quadratic fit (αx2 + βx) and blue areas the standard deviation over the mean. The colour of each box is proportional to the
relative density exhibited by a 50–50 co-culture of both strains; white denotes a neutral interaction, while darker shades of
purple denote larger values of DOD630. In our data, only ΔleuB–ΔmetA exhibits negative relative densities, and is represented
in light green. (b) Network of pair-wise interactions. Each node represents a mutant strain and the width of the edge is
proportional to the strength of the interaction. Only edges with an α larger than the mean are shown (highlighted in yellow
are auxotroph pairs that will later be analysed in more detail). (c) Optimal initial frequency in two-member cross-feeding
communities. Each dot represents the initial frequency in co-culture that maximizes density, and error bars denoting the
standard deviation over the mean (N = 4). Rows correspond to each pair of strains (e.g. if LW has an optimal frequency of
85%, this implies that the co-culture that maximizes OD is composed of 85% of ΔleuB and 15% of ΔthrC).
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concave, suggesting that not all co-cultures can establish a cross-feeding interaction (e.g. ΔmetA–ΔglyA,
ΔthrC–ΔilvA, ΔleuB–ΔmetA, ΔleuB–ΔtrpC). We performed a quadratic fit (αx2 + βx) to these
experimental interaction profiles, and used α to quantify the degree of pair-wise interaction, whereby
high values of α are correlated with enhanced cooperative growth. Table 2 shows the values of α
obtained for each pair, as well as its corresponding R2. Figure 3b shows an α-interaction network,
showing that all auxotrophic strains are able to establish a productive consortium with at least
another mutant, albeit with variable interaction strengths.

Note that, despite positive interactions being prevalent throughout the network, certain strains were
more successful in establishing positive interactions (e.g. ΔleuB, ΔpheA, ΔtrpC) than others (e.g. ΔmetA,
ΔglyA). This is consistent with previous studies that have shown that the biosynthetic cost of
producing an amino acid correlates with the capacity of establishing cross-feeding interactions with
other auxotroph strains [29]. In our data, mutant ΔleuB has the higher number of cross-feeding
interactions, and is also auxotrophic to the most expensive amino acid when considering the cellular
abundances of amino acids [69].

To quantify cooperative growth as a function of the relative abundance of each strain, we subtract the
final optical density observed for each population with the expected final optical density if there was no
metabolic interaction between both strains (the line of additivity, obtained by interpolating the optical
density in each mono-culture). Figure 4a illustrates the profile of interaction obtained for a co-culture
of ΔleuB and ΔtyrA. A consequence of the biosynthetic costs of producing both amino acids is that the
productivity is maximized with ΔleuB at 70% and ΔtyrA at 30% (relative density at 70–30 is 37%
larger than at 50–50). We estimated the optimal initial frequency for all 36 auxotroph pairs and
observed that growth of the co-culture was maximized at different initial frequencies, as illustrated in
figure 3c. It is important to note that the optimal initial ratio is not necessarily the final strain
frequency that maximizes productivity of the consortia.



Table 2. Profile of pair-wise interaction obtained for different pairs of E. coli auxotrophic strains.

mean OD630 mean OD630

key strains (mono-cultures) (50–50) DOD630 α R2

FG ΔpheA− ΔglyA 0.4627 0.5417 0.079 0.39273 0.62

FH ΔpheA− ΔhisB 0.77335 0.952 0.17865 0.69142 0.759

FI ΔpheA− ΔilvA 0.4064 0.5573 0.1509 0.351 0.666

FL ΔpheA− ΔleuB 0.473 0.54 0.067 0.35761 0.749

FM ΔpheA− ΔmetA 0.466 0.56 0.094 0.39667 0.402

FT ΔpheA− ΔthrC 0.49315 0.4858 −0.00735 0.44008 0.100

FW ΔpheA− ΔtrpC 0.52855 0.6215 0.09295 0.4694 0.750

FY ΔpheA− ΔtyrA 0.4615 0.57 0.1085 0.46357 0.585

GH ΔglyA− ΔhisB 0.4337 0.4263 −0.0074 0.29576 0.573

GI ΔglyA− ΔilvA 0.44935 0.5477 0.09835 0.36992 0.708

GL ΔglyA− ΔleuB 0.4315 0.525 0.0935 0.35719 0.285

GM ΔglyA− ΔmetA 0.3605 0.471 0.1105 0.39148 0.290

GW ΔglyA− ΔtrpC 0.3821 0.4733 0.0912 0.35986 0.190

GY ΔglyA− ΔtyrA 0.37035 0.6073 0.23695 0.30094 0.796

GT ΔglyA− ΔthrC 0.36575 0.475 0.10925 0.29148 0.413

HI ΔhisB− ΔilvA 0.4185 0.477 0.0585 0.4071 0.190

HL ΔhisB− ΔleuB 0.4274 0.573 0.1456 0.34599 0.748

HM ΔhisB− ΔmetA 0.47265 0.5682 0.09555 0.39923 0.681

HT ΔhisB− ΔthrC 0.463 0.5415 0.0785 0.39782 0.494

HW ΔhisB− ΔtrpC 0.44285 0.5277 0.08485 0.39261 0.730

HY ΔhisB− ΔtyrA 0.483 0.5495 0.0665 0.41851 0.414

IL ΔilvA− ΔleuB 0.43685 0.5525 0.11565 0.40002 0.886

IM ΔilvA− ΔmetA 0.4559 0.5657 0.1098 0.43427 0.778

IT ΔilvA− ΔthrC 0.4489 0.4547 0.0058 0.46806 0.149

IW ΔilvA− ΔtrpC 0.4905 0.5755 0.085 0.40843 0.764

IY ΔilvA− ΔtyrA 0.53095 0.587 0.05605 0.46823 0.276

LM ΔleuB− ΔmetA 0.44635 0.4697 0.02335 0.43427 0.422

LT ΔleuB− ΔthrC 0.4596 0.4883 0.0287 0.46806 0.416

LW ΔleuB− ΔtrpC 0.46885 0.4828 0.01395 0.4099 0.416

LY ΔleuB− ΔtyrA 0.57085 0.715 0.14415 0.45674 0.765

MT ΔmetA− ΔthrC 0.3871 0.4613 0.0742 0.32419 0.379

MW ΔmetA− ΔtrpC 0.4221 0.4565 0.0344 0.31137 0.506

MY ΔmetA− ΔtyrA 0.365 0.5745 0.2095 0.28458 0.687

TW ΔthrC− ΔtrpC 0.4894 0.5862 0.0968 0.38874 0.778

TY ΔthrC− ΔtyrA 0.45825 0.5655 0.10725 0.34843 0.802

WY ΔtrpC− ΔtyrA 0.47215 0.5945 0.12235 0.35519 0.035
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5. Cooperative growth is enhanced under amino acid starvation
As we are interested in evaluating how amino acid availability modifies the profile of interaction, we
performed high-throughput experiments on a two-dimensional range of externally supplemented
amino acids. The basal concentration of each amino acid was obtained from a computational genome-
scale metabolic model (iML1515) that provides estimates on the concentration of amino acid necessary



initial frequency (%)

0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 f

lu
or

es
ce

nt
 in

te
ns

ity

mCherry
CFP

initial frequency (%)

0

0.02

0.04

0.06

0.08

0.10

m
ax

im
um

 g
ro

w
th

 r
at

e

initial frequency (%)

0

0.05

0.10

0.15

0.20

initial frequency (%)

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18
time (h)

0.08

0.06

0.04

0.02

0

DO
D

63
0

DtyrA DleuB50–50 DtyrA DleuB50–50 DtyrA DleuB50–50

DO
D

63
0

DtyrA DleuB

(b)

(a)

(c) (d )

Figure 4. Cross-feeding interaction between ΔleuB and ΔtyrA. (a) Growth curves obtained in LB without antibiotics for different
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to grow a dry weight of bacteria [70,71] (see Methods; 16.91 mg l−1 of leucine, 7.15 mg l−1 of tyrosine and
8.75 mg l−1 of phenylalanine). We performed amino acid checkerboards in triplicate for mono-cultures of
ΔleuB, ΔtyrA and ΔpheA, as well as for two co-cultures ΔleuB–ΔtyrA and ΔleuB–ΔpheA.

Figure 5a illustrates the relative density obtained for ΔleuB–ΔtyrA growing under different
concentrations of both amino acids (from 0 to a fourfold increase in the basal concentration of each
amino acid). As anticipated by previous studies, cooperative growth increased when an amino acid
was at a low concentration, independently of the concentration of the other metabolite. In particular,
our data show that relative densities are maximized at low concentrations of tyrosine and
intermediate concentrations of leucine, consistent with leucine being more costly than tyrosine in
terms of the number of glucose molecules necessary to produce the amount of amino acids in a cell [69].

To validate that growth is indeed limited by the environmental concentration of the exchanged
metabolite, we externally supplemented glucose and amino acid and estimated the resulting relative
density. Data are summarized in table 3, showing significant differences between amino acid
treatments (p-value < 0.001 for ΔleuB–ΔtyrA co-culture and p-value < 0.001 for ΔleuB–ΔpheA co-culture;
Welch two sample t-test), but not between glucose treatments (p-value > 0.01 for ΔleuB–ΔtyrA co-
culture and p-value > 0.001 for ΔleuB–ΔpheA co-culture; Wilcoxon rank sum test).

Moreover, to experimentally determine the relative abundances of strains in the consortia, we
introduced constitutively expressed genes encoding for different fluorescent markers (mCherry and
CFP, as detailed in table 4). This allowed us to estimate the final abundance of each strain from the
normalized fluorescent intensity. Indeed, figure 4d shows the population exhibits high levels of
mCherry fluorescence in co-cultures where ΔleuB is dominant, and in cyan for initial frequencies that
contain mostly bacterial type ΔtyrA.

From these normalized fluorescent data, we estimated the relative abundance of each strain in an
experiment inoculated with a 50–50 co-culture of both strains and evaluated the interaction between
environmental conditions and population structure. For instance, the checkerboard depicted in figure
5b suggests that the concentration of tyrosine is an important factor driving the structure of the
population; at high concentrations, both strains coexist at similar proportions, while at intermediate
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Figure 5. Amino acid checkerboard experiments. (a) Matrix of relative densities performed under different amino acid concentrations
(leucine and tyrosine, in units of basal concentration). Purple boxes represent high relative density values, white if the interaction is
additive, and green boxes correspond to negative relative densities. (b) Matrix of the relative abundances estimated using fluorescent
intensity, in orange when a majority of the population is ΔtyrA, and in blue when the population consists mainly of ΔleuB cells.
(c) Interaction profiles for different amino acid concentrations (mutualism in purple, parasitism in light purple and competition in
green). (d ) Relative density checkerboard obtained by exposing a co-culture of ΔleuB and ΔpheA to a range of leucine (L) and
phenylalanine (F). (e) Relative abundance between ΔleuB (in blue) and ΔpheA (in orange). ( f ) Interaction profile between
ΔleuB and ΔpheA also shows that mutualism (in purple) is established mainly at low amino acid concentrations.

Table 3. Mean and standard deviation of final OD630 of the co-cultures ΔleuB–ΔtyrA and ΔleuB–ΔpheA.

co-culture treatment mean OD630 s.d.

ΔleuB− ΔtyrA M9 2 g l−1 glucose 0.178250 0.009601

ΔleuB− ΔtyrA M9 4 g l−1 glucose 0.202250 0.008496

ΔleuB− ΔtyrA M9 6 g l−1 glucose 0.211000 0.011424

ΔleuB− ΔtyrA high amino acids 2 g l−1 glucose 0.502000 0.069954

ΔleuB− ΔtyrA high amino acids 4 g l−1 glucose 0.484750 0.054669

ΔleuB− ΔtyrA high amino acids 6 g l−1 glucose 0.478750 0.025849

ΔleuB− ΔpheA M9 2 g l−1 glucose 0.14475 0.05680

ΔleuB− ΔpheA M9 4 g l−1 glucose 0.207500 0.008732

ΔleuB− ΔpheA M9 6 g l−1 glucose 0.235250 0.016873

ΔleuB− ΔpheA high amino acids 2 g l−1 glucose 0.570750 0.52875

ΔleuB− ΔpheA high amino acids 4 g l−1 glucose 0.480500 0.019033

ΔleuB− ΔpheA high amino acids 6 g l−1 glucose 0.026818 0.01630
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tyrosine concentrations, the relative abundance of ΔleuB increases with respect to ΔtyrA. By contrast, the
concentration of leucine appears to be less relevant for the resulting population structure.

Based on the optical density and the relative abundance of each strain, we then estimated the density
of each sub-population and compared its growth relative to the corresponding mono-culture under the
same environmental conditions. This allowed us to characterize the pair-wise interaction of the
community: mutualistic when both strains grow better together than in isolation, parasitism when one
cell performs better in co-culture, at the expense of the other strain, and competition when both mono-
cultures grow better than the mixed population. Figure 5c shows that competitive interactions are
dominant at high levels of both amino acids, while parasitic interactions can be found at intermediate



Table 4. List of strains used in this study.

strain ID/Δ gene amino acid auxotrophy source

ΔpheA phenylalanine Keio collection

ΔglyA glycine Keio collection

ΔhisB histidine Keio collection

ΔilvA isoleucine Keio collection

ΔleuB leucine Keio collection

ΔmetA metionine Keio collection

ΔthrC threonine Keio collection

ΔtrpC tryptophan Keio collection

ΔtyrA tyrosine Keio collection

ΔleuB− mCherry leucine this study

ΔtyrA− eCyan tyrosine this study

ΔpheA− mCherry phenylalanine this study

ΔleuB− eCyan leucine this study
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amino acid concentrations. As expected, mutualistic interactions are prevalent at low concentrations of
supplemented amino acids, particularly of tyrosine.

Finally, to evaluate the generality of this pattern, we performed another checkerboard experiment
with the co-culture ΔleuB and ΔpheA. Similar to the previous auxotrophic pair, figure 5d–f shows that,
in this case, the region of coexistence appears to be smaller, with ΔleuB being more abundant than
ΔpheA in environments where both amino acids were externally supplemented. Also, as with the
ΔleuB–ΔtyrA pair, mutualistic interactions can be found predominantly in experiments with low amino
acid concentrations (in this case, leucine and phenylalanine), while competitive interactions are
established at intermediate amino acid concentration (due to glucose becoming the limiting nutrient).
6. Stringent response promotes metabolic cooperation, in theory
Our experimental data suggest the amino acid availability is the key factor driving the nature of pair-wise
interactions. To evaluate if our multi-scale model exhibits qualitatively similar patterns, we simulated the
addition of different concentrations of amino acid, and measured the resulting relative density when
grown in mono-culture or in a mixed population. Figure 6a shows the density of each strain in a low-
amino-acid environment. In this case, the benefit of metabolic cross-feeding is high and both strains
grow better together than separately. As we increase the concentration of both amino acids, we
transition from a parasitic interaction (figure 6b) whereby only By benefits from growth in co-culture
to a competitive interaction where both strains grow better separately than in a mixed population
(figure 6c).

This transition from mutualism to competition is also clear in the computational checkerboard
experiment illustrated in figure 6d. As in the experimental data, in environments saturated with amino
acids, the benefit of metabolic cross-feeding diminishes and glucose becomes the limiting growth
factor. As anticipated by previous studies [2,18,27–29], cooperative growth is maximized at low amino
acid concentrations (figure 6e). Crucially, it is precisely at low amino acid concentrations where ppGpp
reshapes the proteome to suppress growth, and regulate the metabolism to overcome nutrient
starvation. In this context, we were interested in evaluating the effect of removing ppGpp-induced
transcription at a cellular level in the profile of interaction exhibited by the population.

In our model, this can be achieved by reducing R-induced synthesis of ppGpp (θi). In particular, we
evaluated how the profile of the interaction changed when considering a reduced induction of ppGpp by
repeating the computational checkerboard experiment with θi = 1.5. As expected, the region of
cooperativity presents a significant reduction in area (figure 6f ). Similarly, the relative density of the
co-culture also presents an overall reduction when reducing ppGpp-induction. Figure 6g shows that
the region of positive values decreases considerably, producing competitive interactions in zones
where the interaction was previously mutualistic.
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Figure 6. ppGpp modulates the profile of interaction in cross-feeding communities. (a) Bacterial densities obtained by simulating
the multi-scale model in an environment with low glucose and amino acid concentrations (S0 = 1, X0 = 1, Y0 = 1, with θi = 15.2),
and inoculated with a 50–50 co-culture (solid lines) or with each strain in isolation (dotted lines). Both strains (Bx and By, in blue
and orange, respectively) exhibit increased growth than expected in isolation (mutualism). (b) At intermediate amino acid
concentrations (S0 = 1, X0 = 1.5, Y0 = 1.5), only By benefits from coexisting with Bx ( parasitism). (c) In high amino acid
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θi, shows that dynamic proteome allocation promotes cooperative growth.
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The relevance of ppGpp regulation in the community dynamics is twofold: (1) it reduces growth rate
of any fast-growing strain and (2) it allocates more resources for production of the exchanged metabolite.
Both of these effects are beneficial for the community, as illustrated by the increase in relative density as a
function of θi shown in figure 6h. In the absence of ppGpp-induced regulation (θi = 0), cooperative
communities can be driven to collapse due to the over-production of ribosomal proteins and a general
increase in gene transcription [30,72]. The community also collapses in environments with low amino
acid concentrations if ppGpp regulation overcompensates to nutrient starvation and allocates too
many resources for the synthesis of metabolites at the expense of growth. At high amino acid
concentrations, the effect of ppGpp in the community dynamics is less evident as, independently of
the value of θi, both strains grow better in isolation than in co-culture.

In principle, it would be possible to test this modelling prediction experimentally, for instance by
engineering strains with modified ppGpp synthesis. This could be achieved with either genetic or
post-translational modification that modifies the expression of relA and spoT [32,35]. It is important to
mention, however, that previous studies have shown that strains with knockouts in relA and spoT are
auxotrophic to multiple amino acids, mainly due to the role of ppGpp as a regulatory molecule in the
transcription of genes involved in amino acid biosynthesis pathways.
7. Discussion
A benefit of living in a community is that populations can perform a wide range of functions that are not
achievable by any member species alone, as observed in the microbiota of soil [73,74], water [20,75] and
the human gut [76]. Metabolic interactions within microbial communities are mediated by the cellular
state of each member, but also by the diversity and abundance of each species [77], as well as by the
extracellular environmental conditions [78,79]. It has been shown that population dynamics and
evolutionary dynamics occur at similar time scales, so drive community dynamics is also susceptible
to be tuned by evolution [80,81]. On the one side, cross-feeding interactions can become unstable
through the appearance of defectors, although adaptive evolution and precise environmental control
present an opportunity for artificially selecting microbial communities with specific functions [61,82–84].
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Moreover, recent studies have shown that ecological interactions are significantly modified by the
metabolism of individual members of the community [42,85–87]. Bacteria can modify the local
environment by secreting toxins or growth-promoting molecules, thus modulating the metabolism of
other members of the community. Therefore, metabolic exchange results in a network of pair-wise
interactions that can drive the stability and function of polymicrobial communities [29,88], as well as
the community dynamics [82,89,90]. Crucially, the competitive or cooperative nature of these
interactions depends upon the environmental conditions and the population structure.

For instance, mutualism can be beneficial when a secreted metabolite is toxic for some members of
the community but is consumed by other individuals, thus promoting growth of the metabolite-
producing population and reducing the toxin’s detrimental effect on the community [9,91]. Other
examples of mutualism can be found in spatially explicit [92] and fluctuating environments [93]. In
this paper, we focus on studying a ubiquitous form of mutualistic interaction: the exchange of
essential amino acids within mixed populations [94–96]. A previous experimental evolution study
found that if amino acids are present in the environment in high concentrations, then bacterial
populations rapidly lost the ability to autonomously synthesize the supplemented amino acids [97].
This strong selection for the loss of biosynthetic functions is a consequence of auxotrophic mutants
exhibiting increased fitness over the prototrophic strain when the focal metabolite is present in the
environment [98].

To overcome the complexity of natural microbial communities, previous studies have used synthetic
microbial systems to evaluate a community’s capacity to exchange metabolites in controlled
environmental conditions [10,46], as well as to evaluate the functional diversity and the role of the
environment in community assembly [60,99]. But even simple microbial consortia can present complex
ecological dynamics and can be dominated by high-order interactions [59]. Furthermore, reducing
community complexity in engineered synthetic consortia can be counter-productive, as a reduction in
genetic diversity and functional redundancy can negatively impact the community’s stability. Indeed,
in the absence of functional redundancy, removing a member of the consortium can drive the entire
population to extinction [21]. We believe this observation is fundamental for designing stable
synthetic communities.

In this paper, we combined experiments with multi-scale modelling to evaluate the role of dynamic
proteome allocation in the interaction profile exhibited by auxotrophic communities. Both our model and
experimental data validate previous studies showing that cooperative interactions are prevalent under
nutrient starvation, while competitive interactions are more common in rich environments.
Furthermore, numerical simulations of our computational model suggest that suppressing dynamic
proteome allocation has the effect of reducing yield of the community, a consequence of the rapid
growth and consumption of exchanged metabolites when amino acids are rare. Altogether, we
conclude that dynamic proteome allocation is an important factor driving the productivity and
interaction profile of cross-feeding microbial communities.
8. Methods
8.1. Strains and media
All strains used in this study were obtained from the Keio collection [62], each one with different amino
acid auxotrophy conferred by the deletion of the following genes: glyA, hisB, ilvA, leuB, metA, pheA, thrC,
trpC and tyrA. The genotype of the strains was validated by colony PCR with two different strategies: (1)
using for each strain primers located upstream (forward) and downstream (reverse) of the deletion site
(band corresponding to the kanamycin resistance cassette) and (2) with the first forward of each gene and
the first k1 reported in the construction of the collection that it aligns within the kanamycin resistance
cassette.

To estimate fluorescent intensities in co-culture, we transformed the strains ΔtyrA, ΔpheA and ΔleuB
with a multicopy plasmid assembled by the Golden Gate Cloning technique [100], using the following
bioparts from the MoClo kit: pTU1-A-lacZ (vector), pBP-J23100 (promoter), pBP_BBa_B0034 (RBS),
pBP-ORF-eCFP (eCyan fluorescent protein) or pBP-ORF-mCherry (mCherry fluorescent protein) and
pBP-BBa_B0015 (terminator).

For mono-cultures and co-culture experiments, we selected a single colony of each strain and grew
them in LB medium for 16 h with 40 μg ml−1 of kanamycin, then harvested by centrifuging at 14 000
r.p.m. for 10min, washed twice with M9 medium salts (7 g l−1 K2HPO4, 2 g l−1 KH2PO4, 0.58 g l−1
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Na3C6H5O7, 1 g l−1 (NH4)2SO4 and 0.1 g l−1 MgSO4) and suspended in M9 medium with glucose
(2 g l−1). Before inoculation all strains were adjusted at 0.3 of OD 630 nm (optical density was
measured using a BioTek EL×808 plate reader in 96-well plates).

We determined critical amino acid concentrations using the metabolic model iML1515 [70,71]. To
determine the amino acid concentration (AC) in milligrams per litre to grow a dry weight of bacteria
(RDW) [70,71] we used the following expression: AC [mg l−1] = (RDW · (0.295) · ACMW), where
ACMW is the amino acid molecular weight.

8.2. Pair-wise interaction assays
To evaluate the growth of the strains (mono-cultures) in medium with the amino acid that compensates
their auxotrophy we performed kinetic cultures using microplates with 20 μl of cells and 180 μl of M9-
glucose media (M9 salts supplemented with 2, 4 or 6 g l−1 of glucose and each amino acid:
16.91 mg l−1 of leucine, 7.15 mg l−1 of tyrosine and 8.75 mg l−1 of phenylalanine [70,71]). Each amino
acid was supplemented in 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 times the basal concentration for each amino
acid (concentrations calculated according to iML1515 model [70]). All plates were incubated at 37°C
with continuous shake for 24 h in a BioTek EL×808 plate reader. We measured OD630 every 20min.
Using 0 and 3 times the basal concentration of leucine and tyrosine in minimal media with 2, 4 and
6 g l−1 of glucose we compared the final OD of our co-culture ΔleuB–ΔtyrA (50–50) demonstrating
growth differences between M9 and M9 supplemented with amino acids (table 3).

To characterize the profile of interaction, we estimated the final density of 36 co-cultures with 11
different initial frequencies between both strains: 200:0, 180:20, 160:40, 140:60, 120:80, 100:100, 80:120,
60:140, 40:160, 20:180 and 0:200 μl. Initial bacterial densities were adjusted in M9-glucose media
without amino acids before inoculation, with experiments performed in 96-well plates and incubated
at 37°C with 100 r.p.m. orbital shake. Optical density at 630 nm (OD630) was measured at different
time-points (24, 48 and 72 h). To measure difference in growth rate at the 11 initial frequencies, we
evaluated the growth of the co-culture ΔleuB–mCherry and ΔtyrA–eCyan in minimal media with 0
amino acids, and measured the optical density every 20 min using a microplate reader (BioTek
ELx808). Maximum growth rate was estimated with the slope of a linear fit performed to the
exponential phase of the optical density plot (log(OD630)).

For checkerboard experiments, we inoculated two 50–50 co-cultures, with ΔleuB–mCherry and ΔtyrA–
eCyan and ΔpheA–mCherry and ΔleuB–eCyan, into a 96-well plate with minimal medium supplemented
with a range of leucine and tyrosine and a range of leucine and phenylalanine. For all amino acids,
we used concentrations from 0 to 4 times, increasing each 0.25, according to the basal concentration
for each amino acid. OD and fluorescence were measured at 0, 24 and 48 h using a fluorescent plate
reader (BioTek Synergy H1). To estimate the relative frequency of different strains in co-culture, we
used a flow cytometer (Beckman Coulter with 20 000 events in each environmental condition).

8.3. Computational experiments
Numerical simulations of the model were performed in Julia using DifferentialEquations.jl [101]. Unless
stated otherwise, parameter values used are summarized in table 1. Data analysis was performed in
Matlab and Python using standard libraries.

Data accessibility. All data and code used in this study are available in a public repository [102]. Data and relevant code for
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