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Abstract

Can we exploit our burgeoning understanding of molecular evolution to slow the progress of drug resistance? One role of
an infection clinician is exactly that: to foresee trajectories to resistance during antibiotic treatment and to hinder that
evolutionary course. But can this be done at a hospital-wide scale? Clinicians and theoreticians tried to when they
proposed two conflicting behavioral strategies that are expected to curb resistance evolution in the clinic, these are
known as “antibiotic cycling” and “antibiotic mixing.” However, the accumulated data from clinical trials, now approach-
ing 4 million patient days of treatment, is too variable for cycling or mixing to be deemed successful. The former
implements the restriction and prioritization of different antibiotics at different times in hospitals in a manner said to
“cycle” between them. In antibiotic mixing, appropriate antibiotics are allocated to patients but randomly. Mixing results
in no correlation, in time or across patients, in the drugs used for treatment which is why theorists saw this as an optimal
behavioral strategy. So while cycling and mixing were proposed as ways of controlling evolution, we show there is good
reason why clinical datasets cannot choose between them: by re-examining the theoretical literature we show prior
support for the theoretical optimality of mixing was misplaced. Our analysis is consistent with a pattern emerging in data:
neither cycling or mixing is a priori better than the other at mitigating selection for antibiotic resistance in the clinic.
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Introduction

How best to use antibiotics is a question in applied evolu-
tionary biology of the most profound importance for human
health and yet it has been called a “conceptually uninteresting”
scientific problem for evolutionary biologists (Read and
Huijben 2009). Concepts of how to best treat with antibiotics
remain as controversial as they are important. For instance,
the public is told by medical professionals to adhere to the
fully prescribed course of antibiotics to prevent resistance
(Tabor 2008) but this practise is also said to “make no sense”
(Taubes 2008; Rice 2008) based, as it is said to be, on an
absence of data.

However, it is increasingly clear from molecular studies of
patient infections that clinical resistance evolution occurs de
novo (Mwangi et al. 2007; Blair et al. 2015). There is, therefore,
a pressing need for molecular, evolutionary, and theoretical
biologists to appropriate questions posed by medics and to
bring them from the clinic into the laboratory, both wet and
dry, where the full gamut of investigative tools can be brought
to bear to provide the missing datasets that will resolve de-
bates such as this. We take this approach with a question
from evolutionary medicine that has been posed many times
before where the answer is thought to be well understood.
We will show it is not. The question is this: in an attempt to
preserve their efficacy, should hospitals, and intensive care
specialists, mix or cycle their antibiotics? It is now over

30 years ago that clinicians asked whether a strategy of anti-
biotic cycling might alleviate the resistance problem (Gerding
and Larson 1985; McGowan 1986) and yet this remains an
open problem.

Antibiotic cycling is the crop rotation idea applied to an-
tibiotics (Kollef et al. 1997). Different antibiotics are prioritized
against specific infections for a period of time, only for that
period of drug prioritization to be replaced by one of restric-
tion at a pre-determined later time, which could be many
months (Brown and Nathwani 2005). It was hoped that cy-
cling would select against resistance alleles because one par-
ticular drug would not be encountered by a pathogen during
a restriction cycle and so resistance would “reverse” because
of the fitness costs of being drug-resistant (Niederman 1997;
Kollef et al. 1997). Michael Niederman summarized this idea
in a question (Niederman 1997): is the crop rotation of anti-
biotics the solution to a resistance problem in intensive care
units? Later, predictions were made using computer simula-
tions of mathematical models of different epidemiological
scenarios which claimed that cycling might reduce the inci-
dence of drug-resistant infection no better than if we ran-
domly allocated antibiotics to patients (Bonhoeffer et al.
1997). The latter idea has come to be known as "mixing”
because drugs are mixed within the patient cohort; drugs
are not necessarily “mixed” within patients. Treatments
which do that are called “combination therapies” and these
are used routinely in the clinic.
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Comparing cycling against mixing provided a useful obser-
vation about how to measure the success of novel resistance
mitigation strategies as it provided an appropriate baseline
measure. But it was stated, later still, that cycling different
drugs must be suboptimal because a strategy of maximal
heterogeneous antibiotic use slows the spread of resistance”
(Bergstrom et al. 2004). This idea taken literally, of maximizing
the heterogeneity of drug prescription, is now thought of as
representing the de facto theoretical optimum (Levin and
Bonten 2004). And clinicians state as much (Sandiumenge
et al. 2006) in their work:

“Mathematical models have shown that heteroge-

neous antibiotic use, defined as a balanced use of the

different antimicrobials available, is the most likely

way of reducing the selection pressure that leads to

antibiotic resistance.”

and (Takesue et al. 2010).

“Heterogeneous antibiotic use has been suggested [by

mathematical models] to limit the emergence of

resistance.”

However, we contend that statements like these are based
on an over-generalization of what the details of the theory
actually predict.

Results

Information is Key in a Toy Model Scenario
It is straightforward to see that antibiotic mixing cannot be the
theoretical optimum, at least not in all theories. To understand
why, imagine a highly simplified, toy scenario whereby medics
at a clinic treat patients for infection by a particular pathogen.
To simplify matters completely so this is a tractable model, we
follow previous mathematical modeling studies in assuming
just two drugs are available (Bergstrom et al. 2004; Bonhoeffer
et al. 1997), we also assume all patients are infected and are
treated. Previous theories (Bergstrom et al. 2004; Bonhoeffer
et al. 1997; Levin and Bonten 2004) do not name the pathogen
and nor do we. However, suppose we are told that the path-
ogen exhibits reduced susceptibility to “drug A” in 90% of prior
patient cases but we do not have access to the diagnoses ca-
pable of telling us which individual patients these might be;
again, nor do prior theories. Suppose that the same pathogen
exhibits reduced susceptibility to the second drug “B” to which
the pathogen exhibits resistance in only 10% of prior cases. To
simplify the situation even further, we assume no AB cross
resistance and no AB-combination treatments are given.

Since we know nothing of individual patient cases we are
compelled to argue in terms of “patient fractions” that receive
one or other drug. Now, if we give half the patients drug A and
the half other receive drug B, which is a mixing strategy, the
expected fraction of patients that receive an appropriate treat-
ment is this: (the fraction treated with A)� (the fraction in-
fected by a pathogen susceptible to A)þ (the fraction
treated with B)� (the fraction infected by a pathogen suscep-
tible to B)¼ 1

2� ð100� 90Þ%þ 1
2� ð100� 10Þ% ¼ 50%.

Suppose, on the other hand, we give everyone drug B, which is
not a mixing strategy, then the expected fraction of patients
that receive an appropriate treatment is
0� ð100� 90Þ%þ 1� ð100� 10Þ% ¼ 90%, a greater
value than the previous 50%. Thus the population is treated
appropriately more often, given the information we have, if
the drugs are not mixed within the patient cohort.
Furthermore, the worst thing we can do is to give everyone
drug A because then only 1� ð100� 90Þ%þ 0� ð100�
10Þ% ¼ 10% of patients are given the most appropriate drug.

And what of the resulting evolutionary dynamics? This
simple scenario says nothing about how our strategy should
change as resistance evolves. So, to remedy this we make the
situation a little more general: suppose a fraction, a, of pa-
tients are given drug A, and therefore the fraction 1� a re-
ceive drug B. Assume an expected fraction, p, of patients have
a drug-A resistant infection and suppose q have a drug-B
resistant infection, where p 6¼ q. We now seek a drug control
strategy, a, that maximizes the likelihood of appropriateness
of treatment.

The patient fraction treated with A that exhibits a treat-
able, A-susceptible infection is a � ð1� pÞ, the fraction
treated with A but with B-susceptibility is a � ð1� qÞ, the frac-
tion treated with B but with A-susceptibility is ð1� aÞ � ð1�
pÞ and the fraction treated with B exhibiting B-susceptibility is
ð1� aÞ � ð1� qÞ. The patient fraction treated with a drug
that best contributes to clearance of their infection is, therefore,
að1� pÞ þ ð1� aÞð1� qÞ ¼ 1� qþ aðq� pÞ. This cal-
culation is illustrated in figure 1.

Antibiotic appropriateness is maximized when 1� qþ a
ðq� pÞ is maximized over all possible patient fractions, a,
which is a number between 0 and 1. Since the quantity 1� qþ
aðq� pÞ depends linearly on a, this means

a ¼
(

1 if q > p;

0 if p > q:
(1)

For the strategy defined in (1), maxð1� p; 1� qÞ is the
probability of appropriate treatment and this value is as high
as we can make it given the information we have. We there-
fore call (1) an optimal strategy.

As we this scenario knows nothing about individual pa-
tients, according to (1) it is optimal to treat everyone with the
drug for which resistance is least likely, even though this is a
population-wide strategy that will be sub-optimal for some
individuals. We can, therefore, improve upon this solution by
getting every individual treatment decision right which
means having better information on individual circum-
stances, from antibiograms for example, but this realistic pos-
sibility is not part of our toy scenario.

We now seek the optimal strategy in the toy scenario if the
pathogens are allowed to evolve in response to our behavior
as clinicians. Variables p and q will change over time as a result
and we write p(t) and q(t) to allow this, t being time.
Analogous reasoning shows that the definition of a in (1)
should now be replaced by a time-dependent optimal strat-
egy, a ¼ aoptðtÞ, where
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aoptðtÞ ¼
( 1 if qðtÞ > pðtÞ;

0 if pðtÞ > qðtÞ;

give either drug if pðtÞ ¼ qðtÞ:

(2)

Observe how aoptðtÞ cycles “reactively” between drugs de-
pending on which of p(t) or q(t) is the greater. Note also how
this strategy tacitly requires that p(t) and q(t) can be esti-
mated at all times and that it leads to the most appropriate
treatment with probability 1

T

Ð T

0 maxð1� pðtÞ; 1� qðtÞÞdt if
the clinic is observed for a duration of T time units.

The strategy aoptðtÞ has appeared before in other theories:
the importance of aoptðtÞ for differential equation models of
the antibiotic deployment problem was demonstrated using
mathematical techniques from functional analysis (Beardmore
and Pena-Miller 2010b). This idea is also contained within a
family of strategies that was later termed “informed switching”
for noisy differential equations (Kouyos et al. 2011). Clinically,
aoptðtÞ could be likened to surveillance-based cycling where
antibiotics are restricted according to patterns in emerging
drug resistance data, an idea that has been trialed in the clinic
(Allegranzi et al. 2002; Gerding and Larson 1985).

And what of mixing in this toy analysis? A mixing protocol,
amixðtÞ, is a stochastically fluctuating, knowledge-free strategy
that can fluctuate in time but whose “expected value” (that
we denote E) at all times is a number between zero and one
representing a constant, unchanging bias towards one of the
drugs: this means EðamixðtÞÞ ¼ b where b is that biasing

constant. If we are free to optimize the fraction of appropriate
treatments with respect to b we can determine an “optimal
mixing strategy” that treats appropriately with probability
1
T

Ð T

0 1� qðtÞ þ b � ðqðtÞ � pðtÞÞdt. But, for any fixed b,
this number is necessarily less than the optimal value 1

T

Ð T
0

maxð1� pðtÞ; 1� qðtÞÞdt we gave above for aoptðtÞ. So, our
analysis shows, at least given the assumptions in our toy sce-
nario, it would be wrong to mix drugs. For example, random
mixing (a.k.a. maximal drug heterogeneity) is the strategy
that sets b ¼ 1=2 which gives an appropriate treatment in
a mean fraction 1

T

Ð T
0

1
2 ð1� qðtÞÞ þ 1

2 1� pðtÞÞdtð of cases,
but this is also necessarily sub-optimal relative to aoptðtÞ.

This seems clearcut, but things get interesting when we ask
this: what is the worst strategy possible? Can we determine
that too? This is the unfortunate case that gets the drug usage
decisions wrong with maximal probability. So A (or B)-
resistant infections are treated with drug A (or B) as often
as possible. This occurs when we exchange a(t) with 1� aðtÞ
in the optimal strategy above, so the worst thing possible that
can be done in our toy scenario is to use the cycling strategy
abadðtÞ :¼ 1� aoptðtÞ which gives appropriate treatment to
the fraction minð1� pðtÞ; 1� qðtÞÞ of patients at any given
time. It is unfortunate from a clinical perspective that the best
and worst antibiotic management protocols are cycling strat-
egies, with mixing sitting somewhere in between.

So, to summarize, our scenario manifests the following
“ordering property” in terms of which behavioral strategies

FIG. 1. An illustration of the toy scenario. A patient seeks treatment and one of two antibiotics can be administered. If the probability of resistant
infection to either drug, p and q respectively, can be estimated, optimal behavior maximizes the likelihood of appropriate therapy. This entails
finding a that maximizes 1� qþ aðp� qÞwhere 0 � a � 1 but since this expression is linear in a, the maximum occurs when a is zero or one.
However, the worst possible drug deployment protocol comes from minimizing this expression and this also arises when a is zero or one.

Beardmore et al. . doi:10.1093/molbev/msw292 MBE

804

Deleted Text: `
Deleted Text: '
Deleted Text:  
Deleted Text: `
Deleted Text: '
Deleted Text: l
Deleted Text: `
Deleted Text: '
Deleted Text: optimise 
Deleted Text: `
Deleted Text: '
Deleted Text: summarise
Deleted Text: `
Deleted Text: '
Deleted Text: u


select for resistance by giving appropriate or inappropriate
antibiotic treatments: the best strategy available (aoptðtÞ) cy-
cles drugs reactively through time and this is preferable to the
best mixing strategy. But this, by definition, outperforms the
worst mixing strategy which outperforms the worst strategy
of all those we analyzed, namely (abadðtÞ) which, we repeat, is
a reactive cycling strategy. Thus, the best possible way of
cycling performs better than the mixing strategies which per-
forms better, in turn, than the worst cycling strategy. This
dichotomy with cycling and mixing is very hard to escape
(Beardmore and Pena-Miller 2010b) whichever modeling par-
adigm we analyze, as the next section illustrates.

We first make a brief point concerning the term “optimal.”
The strategy identified as optimal in the above scenario may
well not achieve what we hope for. Dual resistance may well
sweep through the pathogen population, it may pass to fix-
ation and so render both our drugs impotent. It could well be
that the best we can achieve is simply to slow this process
because the long-term outcome we would hope to engineer
(namely, to prevent the occurrence of resistance mutations)
is not possible once we begin to use the drugs. In other words,
“theoretically optimal” does not necessarily mean “desirable”
or clinically useful.

Moreover, strategies that are optimal for one theoretical
model need not be optimal for other theoretical models, let
alone have value in the clinic. Indeed, it is only to be expected
that different optimality criteria, and different modeling
choices, will lead to different optimal strategies even in the
same mathematical model. (As a technical aside, this issue is
central to condensed matter physics where free energy is op-
timized and different optima correspond to different states of
matter.) Above we used the criterion of maximizing the likeli-
hood of appropriate treatment within a patient cohort given
that everyone is treated, but different performance criteria
might have asked us to compromise on this. For example, if
our criterion had sought to maintain longevity of the drugs, the
optimal solution could well have drawn us into a tradeoff of
treating fewer infected patients (Foster and Grundmann 2006).

A Second Toy Model
The above scenario could be criticized in many different ways
for a lack of realism, but do its predictions generalize to more
sophisticated mathematical models? We address this ques-
tion by applying the theory of optimal control and compu-
tational tools designed to solve dynamic programming
problems (Mitchell 2008) to the following differential equa-
tion model of antibiotic stewardship (Reluga 2005):

d

dt
I1 ¼ m1 þ I1ð1� I1 � I2Þ � c1aI1; (3a)

d

dt
I2 ¼ m2 þ I2ð1� I1 � I2Þ � c2ð1� aÞI2: (3b)

Here a ¼ aðtÞ is the patient fraction treated with drug 1,
1� aðtÞ is the fraction of patients treated with drug 2, I1 and
I2 represent the densities of patients infected with drug 2- and
drug 1-resistant strains, respectively, c1 and c2 are the clear-
ance rates of infection when patients receive an appropriate

antibiotic and m1 and m2 are the admittance rates of patients
to the clinic infected by drug 2- and drug 1-resistant strains,
respectively. Finally I1ð0Þ and I2ð0Þ are assumed known when
t¼ 0.

Only the case m1 ¼ m2 and c1 ¼ c2 is considered in
(Reluga 2005) whereas we break this symmetry, analogous
to requiring that p 6¼ q in the toy scenario, and consider
other cases on the grounds of realism. It is unlikely, for exam-
ple, that the rates of admittance of both patient classes I1 and
I2 will be identical at all times. Moreover, if a definitive ranking
of mixing and cycling were possible and clinically relevant, it
would have to be robust to all reasonable variations of pa-
rameters in the model. We are therefore compelled to test
whether, or not, our conclusions are robust to parameter
changes in models like (3).

Now, the optimal control problem for (3) asks us to find a
function a(t) so that the totality of infected patient days

Ð T

0
I1 þ I2 dt is minimized, where T> 0 is some fixed observa-
tion time. Control theory tells us that the optimal strategy
can be determined by solving the so-called Hamilton-Jacobi-
Bellman (HJB) equation associated with (3) numerically. This
numerical approach determines optimal controls as so-called
“feedback laws” whereby a ¼ /ðt; I1; I2Þ for some function /
[see (Mitchell 2008) and supplementary text, Supplementary
Material online for details].

See supplementary figure S1, Supplementary Material on-
line illustrates that when m1 ¼ m2 and c1 ¼ c2, the optimal
control law approximates the function we determined for the
toy scenario:

a ¼
(

1 if I1 > I2;

0 if I1 < I2:
(4)

However, when m1 6¼ m2 or c1 6¼ c2, see supplementary
figure S1, Supplementary Material online shows the optimal
law can resemble the asymmetric control law

a ¼
(

1 if I1 > h � I2;

0 if I1 < h � I2:
(5)

where h depends on system parameters.
It must be noted that the strategies (1) and (4) do not

preclude the optimality of antibiotic mixing, although this
point is mathematically technical. This is because there could
be theoretical cases where I1ðtÞ � I2ðtÞ most of the time
along optimal solution trajectories, in which case a near-
optimal reactive control a would oscillate very rapidly be-
tween the deployment of either drug. While this phenome-
non known as “chattering” would be irrelevant to the clinic, it
could arise in theory if a mixing solution, whereby a¼ 1/2,
were either very close to being optimal or else were optimal.
However, as we discuss in the supplementary, this requires
mathematical models to possess special symmetry properties.

A Third Model of Antibiotic Use
Although very simple, equation (3) broaches the limits of
what can be gleaned using mathematical, analytic tools. So,
in order to progress, we now present two other models based
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on assumptions that have been articulated elsewhere
(Bergstrom et al. 2004; Bonhoeffer et al. 1997) for which we
cannot determine optimal antibiotic controls but that we can
use to compare mixing and cycling. We will present synthetic
data from both models in order to illustrate the generality of
our arguments.

The first of these models, equation (6), assumes two anti-
biotics are available to treat infected patients, labeled 1 and 2.
It assumes S is the proportion of patients in the hospital
infected by a drug-susceptible pathogen, that R1 then repre-
sents the proportion of patients infected by a drug-1-resistant
pathogen, similarly for R2, and then X is the proportion of
uncolonized patients. The model is this:

d

dt
S ¼ lðm� SÞ � ðs1 þ s2 þ cÞSþ bSX þ . . .

. . .þ rbðc1R1 þ c2R2ÞS;
(6a)

d

dt
R1 ¼ lðm1 � R1Þ � ðs2 þ cÞR1 þ bð1� c1ÞR1X � . . .

. . .� rbðc1Sþ ðc1 � c2ÞR2ÞR1;

(6b)

d

dt
R2 ¼ lðm2 � R2Þ � ðs1 þ cÞR2 þ bð1� c2ÞR2X � . . .

. . .� rbðc2Sþ ðc2 � c1ÞR1ÞR2;

(6c)

d

dt
X ¼ lð1�m�m1 �m2 � XÞ þ ðs1 þ s2 þ cÞSþ . . .

. . .þ ðs2 þ cÞR1 þ ðs1 þ cÞR2 � . . .

. . .� bXðSþ ð1� c1ÞR1 þ ð1� c2ÞR2Þ:
(6d)

Equation (6) contains parameters (l; r; m; m1; m2;
c; b; a; smax; c1 and c2) the meanings of which are stated
in table 1. Note that (6) makes no explicit reference to mech-
anisms of drug resistance evolution, whether de novo muta-
tion in the chromosome of the pathogen or else through
horizontal gene transfer. Both do occur in the clinic and,
we believe, are likely to require different mitigation strategies.

Now, in (6), s1 and s2 represent rates of use of drugs 1 and 2,
where all patients are assumed treated with one of the drugs.
This results in a constraint, s1 þ s2 ¼ s, where s a fixed con-
stant that plays the role of “a” in our previous discussion.
Following (Bergstrom et al. 2004) we seek a function, s1ðtÞ,
which minimizes the total fraction of patient days observed
with a drug-resistant infection,

Ð T

0 R1 þ R2dt, where T denotes
a fixed observation time. This, again, is a question in optimal
control but not one that can be easily solved. So, in the absence
of any better strategies, we will apply the reactive cycling solu-
tion (4) to (6) and ask how it performs in relation to mixing.

Before doing this, we first generalize (6) so that the anti-
biotic usage protocol, s1ðtÞ, can be explicitly stochastic. This is
done by introducing a random process into (6) so that s1ðtÞ

represents a noisy, time-varying deployment protocol such
that Eðs1ðtÞÞ ¼ aðtÞ for each t � 0, where Eð�Þ denotes
expectation (see supplementary text, Supplementary
Material online) and aðtÞ is some defined protocol that we
expect clinicians to adhere to; aðtÞ could, for example, rep-
resent a mixing or a cycling protocol.

The second model we refer to is (7) below from
(Bonhoeffer et al. 1997, Case III). It uses a slightly different
terminological convention with “A” and “B” for the drug la-
bels and x ¼ ðx; yw; ya; ybÞ. In this model, x is the density of
patients uninfected by a pathogen, yw represents the number
of patients infected by a wild-type pathogen strain, ya de-
notes the number of patients with a drug-A resistant strain,
similarly for drug-B resistant yb:

dx

dt
¼ k� dx� bðyw þ ya þ ybÞxþ rwyw þ raya

. . .þ rbyb þ hð1� sÞððfa þ fbÞyw þ fayb þ fbyaÞ;
(7a)

dyw

dt
¼ ðbx� c� rw � hðfa þ fbÞÞyw; (7b)

dya

dt
¼ ðbx� c� ra � hfbÞya þ hsfayw; (7c)

dyb

dt
¼ ðbx� c� rb � hfaÞyb þ hsfbyw; (7d)

where the epidemiological parameters are ðk; d; c; h; rw;
s; ra; rb; bÞ whose interpretation is stated in table 2. There

Table 1. The Meaning of the Parameters in Equation (6).

Description Parameters

Patients enter hospital in states S; R1

and R2 at rates lm; lm1 and lm2 respectively
m;m1;m2

Rate of use of drugs 1 and 2 per unit time (days) s1; s2

Fitness cost of resistance to pathogens c1, c2

Relative rate of secondary colonization to
primary colonization

r

Rate constant for colonization of
uncolonized individuals

b

Rate of patient turnover in the hospital l
Represents physician compliance with cycling program a
Untreated patients colonized by susceptible

bacteria remain colonized 1=c days on average
c

Table 2. The Meaning of the Parameters in Equation (7).

Description Parameters

The fraction of patients treated with antibiotic A and B fa, fb
Recovery rates of wild-type, A-res

and B-res infected hosts
rw; ra; rb

Transmission rate of infection b
Maximum rate at which patients are treated h
Fraction of patients that acquire resistance

when treated
s

Per capita death rate of uninfected hosts d
Arrival rate of uninfected hosts k
Infected hosts’ death rate c
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are no multidrug-resistant strains in (7) and although that
case has been considered in (Bonhoeffer et al. 1997), for brev-
ity we do not discuss it.

Here, fa and fb represent the fraction of the population
treated with drugs A and B and assuming everyone is treated,
meaning fa þ fb ¼ 1, following (Bonhoeffer et al. 1997) we seek
a function faðtÞ so that the total of all patient infected-days, i.e.ðT

0

yw þ ya þ yb dt;

is minimized.

The reactive control strategies are, in the case of (6),

s1ðtÞ ¼ s � aðtÞ; s2ðtÞ ¼ s � ð1� aðtÞÞ

and, in the case of (7),

faðtÞ ¼ aðtÞ; fbðtÞ ¼ 1� aðtÞ:

Typical solutions that equation (7) produces when supple-
mented with this reactive control strategy are shown in figure
2 [bottom panel, see label “1.” The data for (6) are similar but
are not shown for reasons of brevity]. To produce figure 2, we
implemented

FIG. 2. (top panel) Two performance histograms (orange and yellow, respectively) illustrate that reactive cycling can outperform all the scheduled
cycling protocols. (bottom panel) Two timeseries from the stochastic version of (7) using (1, left) a protocol that cycles reactively between
antibiotics and (2, right) optimal mixing: protocol (1) outperforms optimal mixing (2) as can be seen in the top panel. Variables in the legend of (2)
are defined in equation (7) and performance here is the number of observed infected patients days.
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aðtÞ ¼
(

1 if yaðtÞ < ybðtÞ

0 if yaðtÞ > ybðtÞ
(8)

in (7) and this figure compares numerical solutions of the
reactive cycling strategy (8) with those of the optimal mixing
protocol determined for (7). They show, by example, that
reactive cycling can outperform optimal mixing.

However, figure 2 gives just one comparison of optimal
mixing and reactive cycling. To probe whether this compar-
ison is representative of the general case we used a stochastic
version of (7) to determine “performance histograms.” To
determine performance histograms we computed the perfor-
mance, namely the total number of infected patient days for a
given model (i.e., with fixed parameters) for both reactive
cycling and optimal mixing strategies using 107 different nu-
merical realizations of stochastic versions of (6) and (7). Figure
2 (top panel, see orange histogram and label “2”) then shows
the resulting histograms. Note how reactive cycling outper-
forms optimal mixing in almost all the simulations of the
particular model realization that we tested. (We determined
performance histograms for all cycling and mixing strategies
in a comparable manner, see the supplementary text,
Supplementary Material online for details).

Implications of Synthetic Data in Figure 2 for
Clinical Trials
There is an important difference between the reactive cycling
strategies, and cycling, used in theory and cycling in the clinic.
Although some clinical studies have utilized ideas that might
be described as reactive cycling (Brown and Nathwani 2005;
Gerding and Larson 1985; Allegranzi et al. 2002; Takesue et al.
2010, 2006), we know of no clinical studies that implement
reactive cycling in exactly the way (8) defines it. Rather, clin-
ical trials make use of scheduled cycling protocols based on
fixed periods of drug rotation (Brown and Nathwani 2005;
Raymond et al. 2001; Martinez et al. 2006; Hedrick et al. 2008).
So, to create a fair comparison, we must also compare (8)
with the scheduled drug rotations that implement fixed, pe-
riodic cycles of antibiotic prioritization and restriction, and we
must then compare this with antibiotic mixing.

Moreover, clinical cycles of antibiotic prioritization and
restriction vary considerably in duration, from one month
(Toltzis et al. 2002), to three (Smith et al. 2008; Hedrick
et al. 2008; Warren et al. 2004) to six (Kollef et al. 1997).
Indeed, many clinical cycling studies have been criticized on
the basis of not implementing repeated periods of cycling
(Brown and Nathwani 2005). Issues like these are difficult
to avoid in practice but they are not relevant to theoretical
studies where we can perform exhaustive searches using
mathematical and computational models.

So, when we simulated theoretical cycling strategies based
on scheduled drug rotation of fixed cycling periods, we ob-
tained a second performance histogram, part of which can be
seen in figure 2 (top panel, yellow histogram). This histogram
shows the performance of entire families of cycling protocols
based on a sampling of many different scheduled rotations
(see supplementary text, Supplementary Material online).

Importantly, figure 2 (top panel) shows that while reactive
cycling outperforms scheduled rotation, many scheduled cy-
cles outperform optimal mixing. It also appears as if the per-
formance histogram of the family of scheduled cycling
strategies contains the performance of optimal mixing right
in its midst. It transpires this feature is no quirk because
mathematical antibiotic deployment models, like equations
(6) and (7), are compelled to have this property. For details of
the argument supporting this outcome, see (Beardmore and
Pena-Miller 2010a) and the supplementary.

Let us explain this feature more carefully. When differential
equation models are used to examine the question of optimal
antibiotic deployment, the two families of clinical strategies
known as cycling (meaning scheduled rotation) and mixing
(maximal antibiotic heterogeneity) must exhibit comparable
levels of drug resistance in the sense that their performance
distributions can always be embedded into each other, with
complete overlap of their performance ranges (Beardmore
and Pena-Miller 2010a). This statement is illustrated as a
schematic in figure 3. It follows from this that for each math-
ematical model and each suboptimal antibiotic mixing pro-
tocol in it, there is a protocol which cycles antibiotics and
which performs better than that mixing protocol. However,
there is also another antibiotic cycling protocol with a differ-
ent cadence of drug cycles which performs worse than mix-
ing. Moreover, even if optimal mixing outperforms most
cycling protocols, there are still some cycling protocols that
perform nearly as well, infinitesimally close, in fact, to the
performance of optimal mixing (Beardmore and Pena-
Miller 2010a). So, if we were to ask which is better in general,
cycling or mixing a priori, given this, it seems hard to say.

All these arguments can be summarized by a single sche-
matic, which is figure 3. Figure 3 is derived from theoretical
arguments but it is clinically relevant and it says this: if one
were to randomly select just one antibiotic mixing protocol
and one cycling protocol and implement both within the
same mathematical model, as if one were making a clinical
trial comparison where very few such comparisons are pos-
sible, one could not be a priori certain (i.e., before the models
are simulated) which strategy will select most against resis-
tance a posteriori. In a clinical context, where a limited num-
ber of trial conditions can be tested, in practise just a handful
with no chance of determining performance histograms,
which cycling cadence or mixing strategy should we choose?
This decision is critical to ultimate performance of that trial
but there is no way of knowing how to optimize this choice a
priori, just as there is no way of doing so in a mathematical
model comparing mixing and cycling.

So why did prior theoretical studies (Bergstrom et al. 2004;
Bonhoeffer et al. 1997; Levin and Bonten 2004) conclude that
antibiotic mixing was optimal, both in theory and for the
clinic? First, those studies only showed that mixing could
outperform cycling in exemplar simulations, this does not
show mixing is an optimal strategy, although it does show
that cycling is not. Another potential answer is an uninten-
tional bias: prior studies biased the way parameter sets were
chosen with an outcome that is illustrated in figure 4
(bottom).
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To explain figure 4 suppose, for sake of argument, that
a mathematical model contains “rate of recovery when
treated” parameters, q1 and q2 for either drug, say, but
suppose that q1 ¼ q2 is assumed. Numerical assumptions
like this were used in prior studies because an argument
can be made that such assumptions engender a parsimo-
nious, like-for-like comparison between two antibiotics
with identical clinical effects whereby the only point of
difference imposed in that model is that one cycles the
drugs and another mixes them. This argument does seem
appropriate to the question we are addressing, but it also
leads to mathematical symmetries (Beardmore and Pena-
Miller 2010b) that produce a systemic bias, as illustrated
figure 4, that is not representative of optimal antibiotic
deployment solutions in the general case. This kind of
symmetry was already an issue in the toy scenario above
whereby we needed a particular inequality, p 6¼ q, in or-
der to avoid a triviality in that discussion.

Please note that figure 4, and the remaining figures, do not
show the performance histogram for all mixing protocols in
the manner done in figure 3, rather they just show histograms
for optimal mixing (colored green throughout), the worst
possible mixing (in red) and random mixing (in blue) using
104 stochastic model simulations. Performance histograms for
mixing protocols are depicted alongside horizontal bars that
illustrate the numerical range of 104 stochastic simulations for
that mixing protocol, where all simulations are performed
with the same noise parameter (see supplementary text,
Supplementary Material online).

While figure 3 is merely a schematic showing cycling and
mixing are impossible to separate in terms of their overall
performance, the structure of this figure is readily observed in

specific mathematical models when we compute perfor-
mance histograms, as figure 4 illustrates. Figure 4 also shows
that while figure 3 is representative of model outcomes irre-
spective of particular parameter choices, those choices can
happen to skew in favor of random mixing, and against cy-
cling, if parameters are chosen to have the symmetries we
mention above. For instance, if we impose a symmetry of the
form m1 ¼ m2; r1 ¼ r2 and c1 ¼ c2 in (6) we can skew our
computations in favor of mixing. The mathematics behind
these symmetries are discussed in detail in (Beardmore and
Pena-Miller 2010b).

Figure 4 (top) shows a second realization of equation (6)
that uses different numerical values for the parameters de-
fined in table 1. This figure still highlights how the overlapping
nature of the performance distributions of mixing and sched-
uled cycling is present, just as it should be according to figure
3. However, the choice of parameter values when mixing was
said to be optimal (Bergstrom et al. 2004) are symmetric and
have skewed the performance distribution [fig. 4 (bottom)].
This choice ensures highly-performing cycling strategies are
rare and cycles that are highly performing exchange the drugs
unfeasibly quickly.

To further illustrate that our conclusions, as embodied in
figure 3, are not model-specific, we present figure 5 deter-
mined using equation (7). Consistent with figure 3, the per-
formance histograms of mixing and cycling (i.e., scheduled
rotation) protocols are embedded within each other. For
equation (7) the definition of performance is different, there
it is the total number of infected patient days (Bonhoeffer
et al. 1997), and yet the properties of the ranges of the per-
formance distributions of mixing and cycling are just as be-
fore, they overlap.

all cyclings
(yellow)

all mixings (blue)

optimal
mixing

worst
mixing

performance

fr
eq

ue
nc

y

reactive cycling (and possibly other information-rich protocols)

worst 
cycling

optimal 
cycling

FIG. 3. The structure of performance histograms of all cycling and all mixing protocols for a typical theoretical model. The shaded regions, each with
unit area, illustrate that the range of performances of the cycling protocols is at least as wide as that of the mixing protocols and a series of
numerical examples in the text illustrates this for specific models. Note that the “optimal cycling” and “optimal mixing” performance can coincide
in this figure whereupon the blue and yellow histograms would have identical ranges. Note also, when illustrating this figure using mathematical
model simulations in the text, we do not plot the performance histogram for all the mixing protocols, rather just optimal mixing (colored green),
worst mixing (red), and random mixing (blue) are indicated.
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Discussion
Despite the problems, theory is useful when contrasting an-
tibiotic mixing and cycling. The manifold decisions made
when designing a clinical trial are almost impossible to stan-
dardize, but one can standardize mathematical models. This
is important. For example, suppose the drug order of cefe-
pime, ciprofloxacin, piperacillin-tazobactam, and imipenem-
cilastatin in the quarterly cycles described to tackle drug-
resistant Pseudomonas aeruginosa in (Hedrick et al. 2008)
had been different? Suppose the trial had instead restricted
ciprofloxacin entirely and implemented twice-yearly cycles?
What then? The possibilities are almost limitless. How could
one even hope to implement the various empirical controls
needed to understand how such changes would impact on
resistance evolution in the clinic? This lack of standardization
is seen by clinicians as a driver behind some of the problems
in answering Niederman’s question (Brown and Nathwani
2005). However, we have shown that determining a priori
which of cycling and mixing selects best against drug resistant
pathogens is still not possible, even when we carefully stan-
dardize the questions using mathematical models.

Intriguingly, deterministic and stochastic models of the
antibiotic deployment problem have been said to have dif-
ferent optimal strategies: deterministic models have mixing
strategies, stochastic models have switching strategies

(Kouyos et al. 2011). As our derivations of treatments that
outperform mixing apply equally, whether or not the models
are stochastic, there is no such dichotomy here and the the-
oretical reasons supporting the existence of such a dichotomy
are not clear. Instead, here, we find the key theoretical issue is
how much clinical and microbiological information each re-
sistance mitigation strategy is able to exploit.

A tacit expectation in this field of study is a, quite reason-
able, hope that the construction of theoretical epidemiolog-
ical models will definitively resolve questions on how we
should act in the clinic to prevent antibiotic resistance evo-
lution. But why should this be so? If the expectation of mod-
elers had been that we might identify circumstances in which,
say, figure 6 were possible, whereby mixing is definitively op-
timal, then, unfortunately, this is not the case (Beardmore and
Pena-Miller 2010b,a) at least not when using ‘SI models’ com-
monly applied in mathematical epidemiology. And equations
(6) and (7) are SI models.

Ultimately, the technical, mathematical reason
(Beardmore and Pena-Miller 2010b) for the impossibility of
figure 6 is this: constant functions (aka mixing) controls can
be approximated by oscillatory functions (aka cycling) as
closely as we like in “weak topologies” of spaces of antibiotic
control functions. When the equations of SI models, and their
performance criteria, define continuous mappings with

FIG. 4. Top and bottom panels show two sets of performance histograms for (6) for cycling (107 simulations in total) and three mixing protocols
(10,000 simulations each). Consistent with Figure 3, both panels exhibit complete overlap in performances as indicated by the horizontal bars.
While both use simulation data from equation (6), the top panel has different costs of resistance from the bottom panel that uses “symmetric”
parameter values that bias in favor of random mixing. In the latter, as the bottom panel shows, there is a low probability of finding a cycling
protocol that can approach the performance of random mixing, although some do. Note, this figure does not show the performance histogram for
all mixing protocols in the manner done in Figure 3, rather histograms determined from stochastic simulations of (6) are shown for optimal mixing
(green), the worst possible mixing (red), and random mixing (blue). Here, (bottom) the blue and green histograms coincide so only the green one is
visible.
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respect to those topologies figure 6 cannot apply. Thus, even
if mixing were optimal in such a model, we could do just as
well by cycling drugs quickly and this forms the main idea for
the mathematical proof (Beardmore and Pena-Miller 2010a)
behind figure 3. Whether this has any relevance to the clinic
depends on what the term “quickly” means in practise.
Indeed, one can cycle drugs every day in a model, one cannot
do that in the clinic.

So, mathematic models tell us that some of the difficulties
of comparing mixing and cycling are inherent to the theory
behind Niederman’s question. They cannot be resolved, not
even within the solution sets of certain mathematical models,
be they deterministic or stochastic. We should not, therefore,
be surprised when clinical trials designed to rank cycling and
mixing also prove inconclusive. After all, clinical trials cannot
even begin to resolve performance distributions. This

all cyclingsall mixings

worst
mixing

performance

fr
eq

ue
nc

y optimal
cycling

FIG. 6. A schematic of impossible performance histograms. If this
outcome were possible in a theoretical model, we would then be
certain that mixing antibiotics outperforms cycling in a mathematical
model, but it has been shown (Beardmore and Pena-Miller 2010b,a)
that this arrangement of histograms cannot arise in equations of the
form (6) and (7).

FIG. 5. (top) This illustrates Figure 3 using performance histograms determined from equation (7), although only three mixing histograms are
shown (random, optimal, and worst). The range of performances, from the best to worst mixings, and the range of the cyclings are shown as
horizontal bars: note how they overlap consistent with Figure 3. (bottom) The random mixing protocol (indicated with a 2 in top and bottom
panels) is deployed into a stochastic version of (7) and it outperforms one cycling protocol (label 3) but it under performs another cycling (label 1).
This ordering property is a general feature of theoretical models like (7).
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uncertainty likely contributes to the ongoing community de-
bates as to the relative merits of cycling and mixing (see
http://goo.gl/Ztywjg; last accessed January 4, 2017).
Meanwhile, trials continue, like the recent multinational
study, the Saturn Project, that is said to be designed to “re-
solve an issue of high controversy (antibiotic cycling vs. mixing)”
(see http://www.saturn-project.eu; last accessed January 4,
2017), whose authors recently stated this about their data:

‘. . .there were no statistically significant differences

in the prevalence of antibiotic resistance during mix-

ing and cycling interventions.’

We propose that figure 3 might provide a theoretical ex-
planation of this statement.

Like cycling, mixing has been tested in at least three
prior clinical studies (Takesue et al. 2006, 2010; Ginn et al.
2012). It did contribute to a reduction in resistant Gram-
negative infections in a hospital-wide study (Takesue et al.
2010) but fared less well when implemented in an inten-
sive care unit (Takesue et al. 2006). It was partially suc-
cessful in one study where it may have contributed to a
reduction in MRSA infection, but without impacting on
Gram-negative infections (Schultsz et al. 2013). However,
such positive outcomes might equally be attributed to
pathogen-specific measures as to mixing, such as the re-
duction of carbapenem usage correlating with reduced
carbapenem resistance in Pseudomonas aeruginosa
(Takesue et al. 2010) or the introduction of infection con-
trol measures known to be effective in limiting fomite-
spreading pathogens like MRSA (Schultsz et al. 2013).
Indeed, a recent clinical study concluded (Ginn et al.
2012) that “. . .prescribing homogeneity per se does not
appear to be a specific resistance driver.” One analysis of
over 3.5M patient-days of antibiotic use data across 42
hospitals “found no significant relationship between [anti-
biotic] diversity and the proportion of resistant pathogens”
(Pakyz et al. 2008).

It is not straightforward to find consistency in the available
clinical data (McGowan 1986; Brown and Nathwani 2005;
John 2000) and, in summary, there is data both for
(Sandiumenge et al. 2006; Takesue et al. 2010) and against
mixing (Takesue et al. 2006) but the same can be said of
cycling. The support for cycling (Raymond et al. 2001;
Martinez et al. 2006; John 2000) is tempered by others who
advocate against it, or who at least indicate their indifference
to it (van Loon et al. 2005; Warren et al. 2004; Toltzis et al.
2002). To give one more example, the cycling of linezolid and
vancomycin in an ICU was called a “promising method to
reduce infections with MRSA” (Smith et al. 2008) but cycling
was also implicated as the cause of an outbreak of multi-drug
resistant Pseudomonas aeruginosa (Hedrick et al. 2008).

Cycling clearly cannot work if resistance to antibiotics is
not lost after a drug is withdrawn (Enne et al. 2001) or if it
returns to baseline levels soon after drugs are reinstated
(Brown and Nathwani 2005). In all this variation, a concensus
has emerged describing the body of trial data as “inconclu-
sive” (Kouyos et al. 2011). From our analysis of the theory, and
given figure 3, this variation is not surprising.

An Individual-Based Treatment Model
As a dénouement, we sought a way of bringing the individual
patient into this discussion. It is individuals that we treat with
antibiotics and yet, to our knowledge, no theoretical treat-
ment of mixing deals with individuals. Patient-specific evolu-
tion occurs during treatment (Mwangi et al. 2007; Blair et al.
2015) and this may mean that individualized treatments
(pathogen-specific and host-specific) will be necessary to
properly optimize antibiotic use. Indeed, the FDA has ap-
proved devices that can target infections based on a rapid
diagnosis of the pathogen from molecular signatures or blood
cultures (Sullivan et al. 2013; Jung et al. 2014; Bergeron and
Ouellette 1998a,b), including devices for Clostridium difficile
(Ber 2008). We predict that if these approaches are consid-
ered within mathematical studies, mixing will not be the op-
timal way of using antibiotics there either because the
principle that better decisions accrue from better information
(Beardmore and Pena-Miller 2010b) will apply.

To test this, we implemented an agent-based computa-
tional model (see supplementary text, Supplementary
Material online) in which a much-simplified hospital ward
contains an array of “beds” and a randomly ordered “queue”
of patients is treated until all have recovered (fig. 7). When
admitted to the ward, patients are infected with a
community-acquired pathogen that shares an ecological
niche and engages in competition with a commensal bacte-
rium within the host. We do not name the pathogen, it is
merely a simulation of a bacterium in a framework for com-
paring resistance mitigation strategies where the unit of treat-
ment are individuals rather than population classes.

The pathogen causes illness but it is not life threatening
and the commensal will eventually outcompete the pathogen
(fig. 7a). However, the rate of patient recovery can be in-
creased by treating appropriately with one of two antibiotics
and patients are discharged when their infection is deemed to
have reached an “asymptomatic” density threshold. A patient
from the queue is then assigned to the newly-freed bed and
treated. Different protocols are ranked using the mean length
of stay (LoS) statistic for each queue where shorter LoS sta-
tistics represent better performance.

Different Treatment Strategies in the Clinic and the
Individual-Based Model
We implemented several antibiotic stewardship protocols in
this model following the many strategies implemented in
practise: cycling (Raymond et al. 2001; Martinez et al. 2006;
Hedrick et al. 2008); mixing based on the adjustment of future
prescription patterns by monitoring prior prescription data
(Takesue et al. 2006, 2010; Sandiumenge et al. 2006);
surveillance-based cycling (Allegranzi et al. 2002; Gerding
and Larson 1985); rapid DNA-based diagnoses with an appro-
priate drug then given (Bergeron and Ouellette 1998a,b);
patient-by-patient rotation of antibiotics (Sandiumenge
et al. 2006) and, finally, the de-escalation of a combination
therapy (Smith et al. 2008; Ame 2005). For a review of other
clinical protocols, we refer to (MacDougall and Polk 2005).

A “reactive mixing” protocol that turns prior infection data
into future stewardship practise has also been evaluated in
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the clinic: the PAMS methodology (“periodic antibacterial
monitoring and supervision”) maximizes antibiotic heteroge-
neity because drugs used in the past gain a low probability of
being used in the future (Takesue et al. 2006). A numerical
index, essentially information entropy, measures antibiotic
heterogeneity and prescription maximizes this index as
time progresses. PAMS does not account for patterns of re-
sistance that emerge during a trial, but it is hoped it will
respond to patterns of drug use that might correlate with
resistance.

Based on this survey, the following protocols were simu-
lated in the individual-based model:

(1) random sequential treatment: each patient receives a
random drug each day (extreme mixing that maxi-
mizes drug heterogeneity);

(2) empirical treatment: a random drug is allocated to the
patient but not changed thereafter (also mixing);

(3) scheduled rotation (periodic cycling): cycles of prioriti-
zation and restriction are fixed before any patients are
admitted;

(4) periodic antibiotic monitoring and supervision (PAMS):
the next patient admitted is treated with the antibiotic
that maximizes the heterogeneity of drugs used so far
(mixing);

(5) surveillance-based rotation: the drug estimated to have
the lowest current prevalence of resistance from recent
antibiograms is prescribed to all patients (the strategy
from the toy scenario);

(6) Personalized (DNA-based) treatments: a rapid assess-
ment is made of the genotype responsible for infection
for every patient. Reassessments conducted during
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FIG. 7. Illustrating the individual-based model. (a) This shows “health state dynamics” of a patient during a sequential antibiotic treatment: blue
and green colored areas show the drug used and the subsequent load of drug-resistant and drug-susceptible pathogens in the host through time.
The black line is the density of a commensal bacterium that competes with the pathogen for resources. The patients is deemed “recovered” when
the commensals have outcompeted the pathogen. (b) This shows treatments in a ward of five beds where a queue of seven patients (labeled
f1; 2; 3; 4; 5; 6; 7g) is to be treated. Colored boxes indicate the protocol where green and blue boxes, respectively, denote patients only treated
with one of the two available drugs, a red outline denotes the discharge of a recovered patient and the arrival of a new patient. (c) An illustration of
the spatial structure in the ward resulting from one realization of the model using a queue of 20 patients and five beds where a seven-day cycling
protocol has been implemented, blue and green colors represent different drugs used. The relative frequency of each of the two single-drug
resistant pathogens in each patient is shown in the right-most skyscraper illustrating that drug resistance is correlated with the drug usage policy.
Gray regions are hosts carrying equal fractions of two different single-drug resistant pathogens, blue and green colors indicate that one of the drug
resistant strains dominates the infection of the host in that bed.
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treatment yield a sequential monotherapy that maxi-
mizes drug appropriateness at all times, even if resis-
tance emerges in the host during treatment.

We do include multidrug resistance in this model but we
do not implement combination therapy as it is not clear how
to engineer a fair, like-for-like comparison of the performance
of drug combinations in a theoretical test of mixing and
cycling.

Individual-Based Model Outcomes
In the absence of treatment, the length of stay (LoS) data are
normally distributed whereas they are log-normally distrib-
uted when everyone is treated using empirical therapy (fig. 8).
Interestingly, empirical treatment reduces the mean LoS

relative to treating no-one, but it also increases the LoS var-
iance (fig. 8). So, although most patients fare better when
treated, empirical treatment exhibits the following tragedy
of the commons (Foster and Grundmann 2006): as resistance
spreads, some patients fare worse when everyone is treated
empirically than if nobody had been treated. Empirical treat-
ment of course works well if it allocates the correct drug,
which happens by chance in 50% of cases, but the LoS data
increases when an inappropriate drug is administered, also in
50% of cases (fig. 8b–d). This is why treating empirically has
such a large variance in its LoS data.

Figure 9 shows this model is consistent with the idea that
there is a sweet spot LoS with respect to antibiotic cycling
cadence, so that cycling works best when neither too fast nor
too slow. However, determining the optimal cycling cadence

FIG. 8. Individual model LoS statistics with no treatment and empirical treatment. (a) The mean length-of-stay distribution (LoS) when no patient
is treated with antibiotics is a normal distribution with mean close to 16 days for the parameter values implemented (see supplementary text,
Supplementary Material online). (b) The LoS distribution when treating empirically follows a log-normal distribution in the same conditions. (c)
We grouped patients treated with empirical therapy into two a posteriori classes: appropriate and inappropriate, according to the drug admin-
istered. Accordingly, the LoS distribution when drug use is inappropriate in empirical therapies have both higher mean and variance. Inappropriate
drug allocation is therefore responsible for the large variance of the empirical treatment strategy in (b). (d) For illustrative purposes: a Kaplan-Meier
plot illustrating the LoS for the two classes from (c).
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so we can profit from this observation would be unfeasible in
practise. Also note how the LoS at the sweet spot in figure 9
performs in relation to other strategies in figure 10: an LoS of
about 7 days means optimal cycling can perform just as well
as any protocol. However, other cycling strategies also per-
form poorly, as bad as having a LoS of two weeks when the
drugs are cycled too slowly.

Figure 10 summarizes our final main result: one cannot
rank strategies 1–6 outlined above definitively because their
LoS distributions overlap. Other outcomes are possible in
differently parameterized instances of this model, but the
set of simulations shown in figure 10 indicates the patient-
specific treatment (strategy 6) can sometimes produce the
lowest mean LoS. Delays in using DNA tests to determine the
pathogen can decrease performance. For instance, if, during
the delay, empirical therapy is given, a delay of 2 days de-
creases drug appropriateness to 80% [see fig. 11a), this model
outcome is consistent with values observed in the clinic
(Shorr et al. 2008)] and LoS performance deteriorates towards
that of empirical therapy as the delay increases further (fig.
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lution of resistance among pathogens in the community that supplies
patients to the model.
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11b). Finally, surveillance-based rotation (that according to
the toy scenario should approximate optimal cycling) and
PAMS (a reactive form of mixing) have similar performance
in this model (fig. 10).

We conclude that information-rich, personalized protocols
can outperform antibiotic cycling and mixing in some math-
ematical models but, we should emphasize, this conclusion
will depend on nuanced model circumstances. For example, if
all patients are infected with pathogens susceptible to both
drugs, a personalized strategy will not outperform mixing
because any treatment will be successful. At the other ex-
treme in terms of the community prevalence of resistance, if
multi-drug resistance has fixed in the pathogen in the com-
munity and so is present in all infections before patients begin
their treatment, it will also matter little which treatment pa-
tients are given because none will work. However, before that
stark situation arises, and somewhere in between these two
extremes, our simulation data shows that targeting appropri-
ate treatments at as many individuals as possible can outper-
form both mixing and cycling.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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